From the 6 numbers you entered, we want to calculate the mean, variance, standard deviation, standard error of the mean, skewness, average deviation (mean absolute deviation), median, mode, range, Pearsons Skewness Coefficient of that number set, entropy, mid-range
Ranked Data Calculation
Sort our number set in ascending order
and assign a ranking to each number:
Ranked Data Table
Number Set Value | 14 | 39 | 42 | 65 | 65 | 88 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 |
Step 2: Using original number set, assign the rank value:
Since we have 6 numbers in our original number set, we assign ranks from lowest to highest (1 to 6)Our original number set in unsorted order was 65,39,65,88,14,42
Our respective ranked data set is 5,2,5,6,1,3
Root Mean Square Calculation
Root Mean Square = | √A |
√N |
where A = x12 + x22 + x32 + x42 + x52 + x62 and N = 6 number set items
Calculate A
A = 142 + 392 + 422 + 652 + 652 + 882
A = 196 + 1521 + 1764 + 4225 + 4225 + 7744
A = 19675
Calculate Root Mean Square (RMS):
RMS = | √19675 |
√6 |
RMS = | 140.26760139106 |
2.4494897427832 |
RMS = 57.264008475365
Central Tendency Calculation
Central tendency contains:
Mean, median, mode, harmonic mean,
geometric mean, mid-range, weighted-average:
Calculate Mean (Average) denoted as μ
μ = | Sum of your number Set |
Total Numbers Entered |
μ = | ΣXi |
n |
μ = | 14 + 39 + 42 + 65 + 65 + 88 |
6 |
μ = | 313 |
6 |
μ = 52.166666666667
Calculate the Median (Middle Value)
Since our number set contains 6 elements which is an even number, our median number is determined as follows:
Number Set = (n1,n2,n3,n4,n5,n6)
Median Number 1 = ½(n)
Median Number 1 = ½(6)
Median Number 1 = Number Set Entry 3
Median Number 2 = Median Number 1 + 1
Median Number 2 = Number Set Entry 3 + 1
Median Number 2 = Number Set Entry 4
For an even number set, we average the 2 median number entries:
Median = ½(n3 + n4)
Therefore, we sort our number set in ascending order and our median is the average of entry 3 and entry 4 of our number set highlighted in red:
(14,39,42,65,65,88)
Median = ½(42 + 65)
Median = ½(107)
Median = 53.5
Calculate the Mode - Highest Frequency Number
The highest frequency of occurence in our number set is 2 times by the following numbers in green:(65,39,65,88,14,42)
Our mode is denoted as: 65
Mode = 65
Calculate Harmonic Mean:
Harmonic Mean = | N |
1/x1 + 1/x2 + 1/x3 + 1/x4 + 1/x5 + 1/x6 |
With N = 6 and each xi a member of the number set you entered, we have:
Harmonic Mean = | 6 |
1/14 + 1/39 + 1/42 + 1/65 + 1/65 + 1/88 |
Harmonic Mean = | 6 |
0.071428571428571 + 0.025641025641026 + 0.023809523809524 + 0.015384615384615 + 0.015384615384615 + 0.011363636363636 |
Harmonic Mean = | 6 |
0.16301198801199 |
Harmonic Mean = 36.807108932128
Calculate Geometric Mean:
Geometric Mean = (x1 * x2 * x3 * x4 * x5 * x6)1/NGeometric Mean = (14 * 39 * 42 * 65 * 65 * 88)1/6
Geometric Mean = 85261176000.16666666666667
Geometric Mean = 45.198624639682
Calcualte Mid-Range:
Mid-Range = | Maximum Value in Number Set + Minimum Value in Number Set |
2 |
Mid-Range = | 88 + 14 |
2 |
Mid-Range = | 102 |
2 |
Mid-Range = 51
Stem and Leaf Plot
Take the first digit of each value in our number set
Use this as our stem value
Use the remaining digits for our leaf portion
Sort our number set in descending order:
{88,65,65,42,39,14}Stem | Leaf |
---|---|
8 | 8 |
6 | 5,5 |
4 | 2 |
3 | 9 |
1 | 4 |
Basic Stats Calculations
Mean, Variance, Standard Deviation, Median, Mode
Calculate Mean (Average) denoted as μ
μ = | Sum of your number Set |
Total Numbers Entered |
μ = | ΣXi |
n |
μ = | 14 + 39 + 42 + 65 + 65 + 88 |
6 |
μ = | 313 |
6 |
μ = 52.166666666667
Calculate Variance denoted as σ2
Let's evaluate the square difference from the mean of each term (Xi - μ)2:
(X1 - μ)2 = (14 - 52.166666666667)2 = -38.1666666666672 = 1456.6944444444
(X2 - μ)2 = (39 - 52.166666666667)2 = -13.1666666666672 = 173.36111111111
(X3 - μ)2 = (42 - 52.166666666667)2 = -10.1666666666672 = 103.36111111111
(X4 - μ)2 = (65 - 52.166666666667)2 = 12.8333333333332 = 164.69444444444
(X5 - μ)2 = (65 - 52.166666666667)2 = 12.8333333333332 = 164.69444444444
(X6 - μ)2 = (88 - 52.166666666667)2 = 35.8333333333332 = 1284.0277777778
Adding our 6 sum of squared differences up, we have our variance numerator:
ΣE(Xi - μ)2 = 1456.6944444444 + 173.36111111111 + 103.36111111111 + 164.69444444444 + 164.69444444444 + 1284.0277777778
ΣE(Xi - μ)2 = 3346.8333333333
Now that we have the sum of squared differences from the means, calculate variance:
Population | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
|
|
|
| ||||||
Variance: σp2 = 557.80555555556 | Variance: σs2 = 669.36666666667 | ||||||||
Standard Deviation: σp = √σp2 = √557.80555555556 | Standard Deviation: σs = √σs2 = √669.36666666667 | ||||||||
Standard Deviation: σp = 23.6179 | Standard Deviation: σs = 25.8721 |
Calculate the Standard Error of the Mean:
Population | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
|
|
|
|
|
| ||||
SEM = 9.642 | SEM = 10.5622 |
Skewness = | E(Xi - μ)3 |
(n - 1)σ3 |
Let's evaluate the square difference from the mean of each term (Xi - μ)3:
(X1 - μ)3 = (14 - 52.166666666667)3 = -38.1666666666673 = -55597.171296296
(X2 - μ)3 = (39 - 52.166666666667)3 = -13.1666666666673 = -2282.587962963
(X3 - μ)3 = (42 - 52.166666666667)3 = -10.1666666666673 = -1050.837962963
(X4 - μ)3 = (65 - 52.166666666667)3 = 12.8333333333333 = 2113.5787037037
(X5 - μ)3 = (65 - 52.166666666667)3 = 12.8333333333333 = 2113.5787037037
(X6 - μ)3 = (88 - 52.166666666667)3 = 35.8333333333333 = 46010.99537037
Adding our 6 sum of cubed differences up, we have our skewness numerator:
ΣE(Xi - μ)3 = -55597.171296296 + -2282.587962963 + -1050.837962963 + 2113.5787037037 + 2113.5787037037 + 46010.99537037
ΣE(Xi - μ)3 = -8692.4444444444
Now that we have the sum of cubed differences from the means, calculate skewness:
Skewness = | E(Xi - μ)3 |
(n - 1)σ3 |
Skewness = | -8692.4444444444 |
(6 - 1)23.61793 |
Skewness = | -8692.4444444444 |
(5)13174.187442763 |
Skewness = | -8692.4444444444 |
65870.937213817 |
Skewness = -0.13196175448709
Calculate Average Deviation (Mean Absolute Deviation) denoted below:
AD = | Σ|Xi - μ| |
n |
Let's evaluate the absolute value of the difference from the mean of each term |Xi - μ|:
|X1 - μ| = |14 - 52.166666666667| = |-38.166666666667| = 38.166666666667
|X2 - μ| = |39 - 52.166666666667| = |-13.166666666667| = 13.166666666667
|X3 - μ| = |42 - 52.166666666667| = |-10.166666666667| = 10.166666666667
|X4 - μ| = |65 - 52.166666666667| = |12.833333333333| = 12.833333333333
|X5 - μ| = |65 - 52.166666666667| = |12.833333333333| = 12.833333333333
|X6 - μ| = |88 - 52.166666666667| = |35.833333333333| = 35.833333333333
Adding our 6 absolute value of differences from the mean, we have our average deviation numerator:
Σ|Xi - μ| = 38.166666666667 + 13.166666666667 + 10.166666666667 + 12.833333333333 + 12.833333333333 + 35.833333333333
Σ|Xi - μ| = 123
Now that we have the absolute value of the differences from the means, calculate average deviation (mean absolute deviation):
AD = | Σ|Xi - μ| |
n |
AD = | 123 |
6 |
Average Deviation = 20.5
Calculate the Median (Middle Value)
Since our number set contains 6 elements which is an even number, our median number is determined as follows:
Number Set = (n1,n2,n3,n4,n5,n6)
Median Number 1 = ½(n)
Median Number 1 = ½(6)
Median Number 1 = Number Set Entry 3
Median Number 2 = Median Number 1 + 1
Median Number 2 = Number Set Entry 3 + 1
Median Number 2 = Number Set Entry 4
For an even number set, we average the 2 median number entries:
Median = ½(n3 + n4)
Therefore, we sort our number set in ascending order and our median is the average of entry 3 and entry 4 of our number set highlighted in red:
(14,39,42,65,65,88)
Median = ½(42 + 65)
Median = ½(107)
Median = 53.5
Calculate the Mode - Highest Frequency Number
The highest frequency of occurence in our number set is 2 times by the following numbers in green:(65,39,65,88,14,42)
Our mode is denoted as: 65
Mode = 65
Calculate the Range
Range = Largest Number in the Number Set - Smallest Number in the Number SetRange = 88 - 14
Range = 74
Calculate Pearsons Skewness Coefficient 1:
PSC1 = | μ - Mode |
σ |
PSC1 = | 3(52.166666666667 - 65) |
23.6179 |
PSC1 = | 3 x -12.833333333333 |
23.6179 |
PSC1 = | -38.5 |
23.6179 |
PSC1 = -1.6301
Calculate Pearsons Skewness Coefficient 2:
PSC2 = | μ - Median |
σ |
PSC1 = | 3(52.166666666667 - 53.5) |
23.6179 |
PSC2 = | 3 x -1.3333333333333 |
23.6179 |
PSC2 = | -4 |
23.6179 |
PSC2 = -0.1694Entropy = Ln(n)
Entropy = Ln(6)
Entropy = 1.7917594692281
Mid-Range = | Smallest Number in the Set + Largest Number in the Set |
2 |
Mid-Range = | 88 + 14 |
2 |
Mid-Range = | 102 |
2 |
Mid-Range = 51
Calculate the Quartile Items
We need to sort our number set from lowest to highest shown below:{14,39,42,65,65,88}
Calculate Upper Quartile (UQ) when y = 75%:
V = | y(n + 1) |
100 |
V = | 75(6 + 1) |
100 |
V = | 75(7) |
100 |
V = | 525 |
100 |
V = 5 ← Rounded down to the nearest integer
Upper quartile (UQ) point = Point # 5 in the dataset which is 65
14,39,42,65,65,88
Calculate Lower Quartile (LQ) when y = 25%:
V = | y(n + 1) |
100 |
V = | 25(6 + 1) |
100 |
V = | 25(7) |
100 |
V = | 175 |
100 |
V = 2 ← Rounded up to the nearest integer
Lower quartile (LQ) point = Point # 2 in the dataset which is 39
14,39,42,65,65,88
Calculate Inter-Quartile Range (IQR):
IQR = UQ - LQIQR = 65 - 39
IQR = 26
Calculate Lower Inner Fence (LIF):
Lower Inner Fence (LIF) = LQ - 1.5 x IQRLower Inner Fence (LIF) = 39 - 1.5 x 26
Lower Inner Fence (LIF) = 39 - 39
Lower Inner Fence (LIF) = 0
Calculate Upper Inner Fence (UIF):
Upper Inner Fence (UIF) = UQ + 1.5 x IQRUpper Inner Fence (UIF) = 65 + 1.5 x 26
Upper Inner Fence (UIF) = 65 + 39
Upper Inner Fence (UIF) = 104
Calculate Lower Outer Fence (LOF):
Lower Outer Fence (LOF) = LQ - 3 x IQRLower Outer Fence (LOF) = 39 - 3 x 26
Lower Outer Fence (LOF) = 39 - 78
Lower Outer Fence (LOF) = -39
Calculate Upper Outer Fence (UOF):
Upper Outer Fence (UOF) = UQ + 3 x IQRUpper Outer Fence (UOF) = 65 + 3 x 26
Upper Outer Fence (UOF) = 65 + 78
Upper Outer Fence (UOF) = 143
Calculate Suspect Outliers:
Suspect Outliers are values between the inner and outer fencesWe wish to mark all values in our dataset (v) in red below such that -39 < v < 0 and 104 < v < 143
14,39,42,65,65,88
Calculate Highly Suspect Outliers:
Highly Suspect Outliers are values outside the outer fencesWe wish to mark all values in our dataset (v) in red below such that v < -39 or v > 143
14,39,42,65,65,88
Calculate weighted average
65,39,65,88,14,42
Weighted-Average Formula:
Multiply each value by each probability amount
We do this by multiplying each Xi x pi to get a weighted score Y
Weighted Average = | X1p1 + X2p2 + X3p3 + X4p4 + X5p5 + X6p6 |
n |
Weighted Average = | 65 x + 39 x + 65 x + 88 x + 14 x + 42 x |
6 |
Weighted Average = | 0 + 0 + 0 + 0 + 0 + 0 |
6 |
Weighted Average = | 0 |
6 |
Weighted Average = 0
Frequency Distribution Table
Show the freqency distribution table for this number set
14, 39, 42, 65, 65, 88
Determine the Number of Intervals using Sturges Rule:
We need to choose the smallest integer k such that 2k ≥ n where n = 6
For k = 1, we have 21 = 2
For k = 2, we have 22 = 4
For k = 3, we have 23 = 8 ← Use this since it is greater than our n value of 6
Therefore, we use 3 intervals
Our maximum value in our number set of 88 - 14 = 74
Each interval size is the difference of the maximum and minimum value divided by the number of intervals
Interval Size = | 74 |
3 |
Add 1 to this giving us 24 + 1 = 25
Frequency Distribution Table
Class Limits | Class Boundaries | FD | CFD | RFD | CRFD |
---|---|---|---|---|---|
14 - 39 | 13.5 - 39.5 | 1 | 1 | 1/6 = 16.67% | 1/6 = 16.67% |
39 - 64 | 38.5 - 64.5 | 2 | 1 + 2 = 3 | 2/6 = 33.33% | 3/6 = 50% |
64 - 89 | 63.5 - 89.5 | 3 | 1 + 2 + 3 = 6 | 3/6 = 50% | 6/6 = 100% |
6 | 100% |
Successive Ratio Calculation
Go through our 6 numbers
Determine the ratio of each number to the next one
Successive Ratio 1: 14,39,42,65,65,88
14:39 → 0.359
Successive Ratio 2: 14,39,42,65,65,88
39:42 → 0.9286
Successive Ratio 3: 14,39,42,65,65,88
42:65 → 0.6462
Successive Ratio 4: 14,39,42,65,65,88
65:65 → 1
Successive Ratio 5: 14,39,42,65,65,88
65:88 → 0.7386
Successive Ratio Answer
Successive Ratio = 14:39,39:42,42:65,65:65,65:88 or 0.359,0.9286,0.6462,1,0.7386
Final Answers
5,2,5,6,1,3
RMS = 57.264008475365
Harmonic Mean = 36.807108932128Geometric Mean = 45.198624639682
Mid-Range = 51
Weighted Average = 0
Successive Ratio = Successive Ratio = 14:39,39:42,42:65,65:65,65:88 or 0.359,0.9286,0.6462,1,0.7386
You have 1 free calculations remaining
What is the Answer?
5,2,5,6,1,3
RMS = 57.264008475365
Harmonic Mean = 36.807108932128Geometric Mean = 45.198624639682
Mid-Range = 51
Weighted Average = 0
Successive Ratio = Successive Ratio = 14:39,39:42,42:65,65:65,65:88 or 0.359,0.9286,0.6462,1,0.7386
How does the Basic Statistics Calculator work?
Free Basic Statistics Calculator - Given a number set, and an optional probability set, this calculates the following statistical items:
Expected Value
Mean = μ
Variance = σ2
Standard Deviation = σ
Standard Error of the Mean
Skewness
Mid-Range
Average Deviation (Mean Absolute Deviation)
Median
Mode
Range
Pearsons Skewness Coefficients
Entropy
Upper Quartile (hinge) (75th Percentile)
Lower Quartile (hinge) (25th Percentile)
InnerQuartile Range
Inner Fences (Lower Inner Fence and Upper Inner Fence)
Outer Fences (Lower Outer Fence and Upper Outer Fence)
Suspect Outliers
Highly Suspect Outliers
Stem and Leaf Plot
Ranked Data Set
Central Tendency Items such as Harmonic Mean and Geometric Mean and Mid-Range
Root Mean Square
Weighted Average (Weighted Mean)
Frequency Distribution
Successive Ratio
This calculator has 2 inputs.
What 8 formulas are used for the Basic Statistics Calculator?
Root Mean Square = √A/√NSuccessive Ratio = n1/n0
μ = ΣXi/n
Mode = Highest Frequency Number
Mid-Range = (Maximum Value in Number Set + Minimum Value in Number Set)/2
Quartile: V = y(n + 1)/100
σ2 = ΣE(Xi - μ)2/n
For more math formulas, check out our Formula Dossier
What 20 concepts are covered in the Basic Statistics Calculator?
average deviationMean of the absolute values of the distance from the mean for each number in a number setbasic statisticscentral tendencya central or typical value for a probability distribution. Typical measures are the mode, median, meanentropyrefers to disorder or uncertaintyexpected valuepredicted value of a variable or eventE(X) = ΣxI · P(x)frequency distributionfrequency measurement of various outcomesinner fenceut-off values for upper and lower outliers in a datasetmeanA statistical measurement also known as the averagemedianthe value separating the higher half from the lower half of a data sample,modethe number that occurs the most in a number setouter fencestart with the IQR and multiply this number by 3. We then subtract this number from the first quartile and add it to the third quartile. These two numbers are our outer fences.outlieran observation that lies an abnormal distance from other values in a random sample from a populationquartile1 of 4 equal groups in the distribution of a number setrangeDifference between the largest and smallest values in a number setrankthe data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.sample space the set of all possible outcomes or results of that experiment.standard deviationa measure of the amount of variation or dispersion of a set of values. The square root of variancestem and leaf plota technique used to classify either discrete or continuous variables. A stem and leaf plot is used to organize data as they are collected. A stem and leaf plot looks something like a bar graph. Each number in the data is broken down into a stem and a leaf, thus the name.varianceHow far a set of random numbers are spead out from the meanweighted averageAn average of numbers using probabilities for each event as a weighting
Example calculations for the Basic Statistics Calculator
Basic Statistics Calculator Video
Tags:
Add This Calculator To Your Website
ncG1vNJzZmivp6x7rq3ToZqepJWXv6rA2GeaqKVfqMGiwMGaqqKbXqW1sYvNrqRqdWZqcnOPknJca3tmanJzj5dxXGt7YWlyc4%2BTa12ppG14rq2v1KWYrZ0%3D